Bifurcation structure of chaotic attractor in switched dynamical systems with spike noise
Akihito Matsuo,
Hiroyuki Asahara and
Takuji Kousaka
Chaos, Solitons & Fractals, 2012, vol. 45, issue 6, 795-804
Abstract:
High-frequency ripple (spike noise) effects in the qualitative properties of DC/DC converter circuits. This study investigates the bifurcation structure of a chaotic attractor in a switched dynamical system with spike noise. First, we introduce the system dynamics and derive the associated Poincaré map. Next, we show the bifurcation structure of the chaotic attractor in a system with spike noise. Finally, we investigate the dynamical effect of spike noise in the existence region of the chaotic attractor compare with that of a chaotic attractor in a system with ideal switching. The results suggest that spike noise enlarges an invariant set and generates a new bifurcation structure of the chaotic attractor.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000562
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:6:p:795-804
DOI: 10.1016/j.chaos.2012.02.011
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().