EconPapers    
Economics at your fingertips  
 

Bifurcation structure of chaotic attractor in switched dynamical systems with spike noise

Akihito Matsuo, Hiroyuki Asahara and Takuji Kousaka

Chaos, Solitons & Fractals, 2012, vol. 45, issue 6, 795-804

Abstract: High-frequency ripple (spike noise) effects in the qualitative properties of DC/DC converter circuits. This study investigates the bifurcation structure of a chaotic attractor in a switched dynamical system with spike noise. First, we introduce the system dynamics and derive the associated Poincaré map. Next, we show the bifurcation structure of the chaotic attractor in a system with spike noise. Finally, we investigate the dynamical effect of spike noise in the existence region of the chaotic attractor compare with that of a chaotic attractor in a system with ideal switching. The results suggest that spike noise enlarges an invariant set and generates a new bifurcation structure of the chaotic attractor.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000562
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:6:p:795-804

DOI: 10.1016/j.chaos.2012.02.011

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:45:y:2012:i:6:p:795-804