Entropy estimation of the Hénon attractor
Chihiro Matsuoka and
Koichi Hiraide
Chaos, Solitons & Fractals, 2012, vol. 45, issue 6, 805-809
Abstract:
The topological entropy of the Hénon attractor is estimated using a function that describes the stable and unstable manifolds of the Hénon map. This function provides an accurate estimate of the length of curves in the attractor. The estimation method presented here can be applied to cases in which the invariant set is not hyperbolic. From the result of the length calculation, we have estimated the topological entropy h as h∼0.49703 for the original parameters a=1.4 and b=0.3 adopted by Hénon.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000586
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:6:p:805-809
DOI: 10.1016/j.chaos.2012.02.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().