EconPapers    
Economics at your fingertips  
 

On the nesting of Painlevé hierarchies: A Hamiltonian approach

A. Pickering

Chaos, Solitons & Fractals, 2012, vol. 45, issue 7, 935-941

Abstract: We consider the phenomenon whereby two different Painlevé hierarchies, related to the same hierarchy of completely integrable equations, are such that solutions of one member of one of the Painlevé hierarchies are also solutions of a higher-order member of the other Painlevé hierarchy. An explanation is given in terms of the Hamiltonian structures of the related underlying completely integrable hierarchies, and is sufficiently generally formulated so as to be applicable equally to both continuous and discrete Painlevé hierarchies. Special integrals of a further Painlevé hierarchy related by Bäcklund transformation to the other Painlevé hierarchy mentioned above can also be constructed. Examples of the application of this approach to Painlevé hierarchies related to the Korteweg–de Vries, dispersive water wave, Toda and Volterra integrable hierarchies are considered. Our results provide further evidence of the importance of the underlying structures of related completely integrable hierarchies in understanding the properties of Painlevé hierarchies.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000835
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:7:p:935-941

DOI: 10.1016/j.chaos.2012.03.010

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:45:y:2012:i:7:p:935-941