EconPapers    
Economics at your fingertips  
 

Novel stability criteria for impulsive delayed reaction–diffusion Cohen–Grossberg neural networks via Hardy–Poincarè inequality

Yutian Zhang and Qi Luo

Chaos, Solitons & Fractals, 2012, vol. 45, issue 8, 1033-1040

Abstract: This work is devoted to the investigation of stability theory for impulsive delayed reaction–diffusion Cohen–Grossberg neural networks with Dirichlet boundary condition. By means of Hardy–Poincarè inequality and Gronwall–Bellman-type impulsive integral inequality, we summarize some new and concise sufficient conditions ensuring global exponential stability of the equilibrium point. The presented stability criteria show that not only reaction–diffusion coefficients but also regional features as well as the first eigenvalue of the Dirichlet Laplacian will impact the stability. In conclusion, two examples are illustrated to demonstrate the effectiveness of our obtained results.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912001087
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:8:p:1033-1040

DOI: 10.1016/j.chaos.2012.05.001

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:45:y:2012:i:8:p:1033-1040