Using impulses to control the convergence toward invariant surfaces of continuous dynamical systems
José Marão,
Xinzhi Liu and
Annibal Figueiredo
Chaos, Solitons & Fractals, 2012, vol. 45, issue 8, 1067-1079
Abstract:
Let us consider a smooth invariant surface S of a given ordinary differential equations system. In this work we develop an impulsive control method in order to assure that the trajectories of the controlled system converge toward the surface S. The method approach is based on a property of a certain class of invariant surfaces whose the dynamics associated to their transverse directions can be described by a non-autonomous linear system. This fact allows to define an impulsive system which drives the trajectories toward the surface S. Also, we set up a definition of local stability exponents which can be associated to such kind of invariant surface.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912001099
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:8:p:1067-1079
DOI: 10.1016/j.chaos.2012.05.002
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().