Stability of matter–wave soliton in a time-dependent complicated trap
Etienne Wamba,
Serge Y. Doka,
Thierry B. Ekogo,
Alidou Mohamadou and
Timoleon C. Kofane
Chaos, Solitons & Fractals, 2012, vol. 45, issue 9, 1121-1132
Abstract:
We examine the possibility to generate localized structures in effectively one-dimensional Gross–Pitaevskii with a time-dependent scattering length and a complicated potential. Through analytical methods invoking a generalized lens-type transformation and the Darboux transformation, we present the integrable condition for the Gross–Pitaevskii equation and obtain the exact analytical solution which describes the modulational instability and the propagation of bright solitary waves on a continuous wave background. The dynamics and stability of this solution are analyzed. Moreover, by employing the extended tanh-function method we obtain the exact analytical solutions which describes the propagation of dark and other families of solitary waves.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912001051
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:9:p:1121-1132
DOI: 10.1016/j.chaos.2012.04.003
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().