Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity
Luca Mesin
Chaos, Solitons & Fractals, 2012, vol. 45, issue 9, 1220-1230
Abstract:
Joint effect of electrical heterogeneity (e.g. induced by ischemia) and mechanical deformation is investigated for an anisotropic, quasi–incompressible model of cardiac electromechanical coupling (EMC) using the active strain approach and periodic boundary conditions. Three local inhomogeneities with different geometry are simulated. Under a specific stimulation protocol, the heterogeneities are able to induce spirals. The interplay between the dimension of the electrical inhomogeneity, the EMC and the mechano-electrical feedback provided by the stretch activated current (SAC) determines the dynamics of the spiral waves of excitation, which could extinguish (in the case of low SAC), or be stable (with the tip rotating inside the inhomogeneity), or drift and be annihilated (in the case of high SAC).
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912001385
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:9:p:1220-1230
DOI: 10.1016/j.chaos.2012.05.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().