Stability and bifurcation of a stage-structured predator–prey model with both discrete and distributed delays
Fengyan Wang,
Yang Kuang,
Changming Ding and
Shuwen Zhang
Chaos, Solitons & Fractals, 2013, vol. 46, issue C, 19-27
Abstract:
This paper concerns with a new delayed predator–prey model with stage structure on prey, in which the immature prey and the mature prey are preyed by predator and the delay is the length of the immature stage. Mathematical analysis of the model equations is given with regard to invariance of non-negativity, boundedness of solutions, permanence and global stability and nature of equilibria. Our work shows that the stage structure on the prey is one of the important factors that affect the extinction of the predator, and the predation on immature prey is a cause of periodic oscillation of population and can make the behaviors of the system more complex. The predation on the immature and mature prey brings both positive and negative effects on the permanence of the predator, if ignore the predation on immature prey in the system, the stage-structure on prey brings only negative effect on the permanence of the predator.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912002032
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:46:y:2013:i:c:p:19-27
DOI: 10.1016/j.chaos.2012.10.003
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().