EconPapers    
Economics at your fingertips  
 

On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems

Shijun Liao

Chaos, Solitons & Fractals, 2013, vol. 47, issue C, 1-12

Abstract: In this paper, an extremely accurate numerical algorithm, namely the “clean numerical simulation” (CNS), is proposed to accurately simulate the propagation of micro-level inherent physical uncertainty of chaotic dynamic systems. The chaotic Hamiltonian Hénon–Heiles system for motion of stars orbiting in a plane about the galactic center is used as an example to show its basic ideas and validity. Based on Taylor expansion at rather high-order and MP (multiple precision) data in very high accuracy, the CNS approach can provide reliable trajectories of the chaotic system in a finite interval t∈[0,Tc], together with an explicit estimation of the critical time Tc. Besides, the residual and round-off errors are verified and estimated carefully by means of different time-step Δt, different precision of data, and different order M of Taylor expansion. In this way, the numerical noises of the CNS can be reduced to a required level, i.e. the CNS is a rigorous algorithm. It is illustrated that, for the considered problem, the truncation and round-off errors of the CNS can be reduced even to the level of 10−1244 and 10−1000, respectively, so that the micro-level inherent physical uncertainty of the initial condition (in the level of 10−60) of the Hénon–Heiles system can be investigated accurately. It is found that, due to the sensitive dependence on initial condition (SDIC) of chaos, the micro-level inherent physical uncertainty of the position and velocity of a star transfers into the macroscopic randomness of motion. Thus, chaos might be a bridge from the micro-level inherent physical uncertainty to the macroscopic randomness in nature. This might provide us a new explanation to the SDIC of chaos from the physical viewpoint.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912002196
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:47:y:2013:i:c:p:1-12

DOI: 10.1016/j.chaos.2012.11.009

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:47:y:2013:i:c:p:1-12