Persistent switching near a heteroclinic model for the geodynamo problem
Alexandre A.P. Rodrigues
Chaos, Solitons & Fractals, 2013, vol. 47, issue C, 73-86
Abstract:
Modelling chaotic and intermittent behaviour, namely the excursions and reversals of the geomagnetic field, is a big problem far from being solved. Armbruster et al. [5] considered that structurally stable heteroclinic networks associated to invariant saddles may be the mathematical object responsible for the aperiodic reversals in spherical dynamos. In this paper, invoking the notion of heteroclinic switching near a network of rotating nodes, we present analytical evidences that the mathematical model given by Melbourne et al. [19] contributes to the study of the georeversals. We also present numerical plots of solutions of the model, showing the intermittent behaviour of trajectories near the heteroclinic network under consideration.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912002378
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:47:y:2013:i:c:p:73-86
DOI: 10.1016/j.chaos.2012.12.005
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().