EconPapers    
Economics at your fingertips  
 

Fokker–Planck equation on fractal curves

Seema E. Satin, Abhay Parvate and A.D. Gangal

Chaos, Solitons & Fractals, 2013, vol. 52, issue C, 30-35

Abstract: A Fokker–Planck equation on fractal curves is obtained, starting from Chapmann–Kolmogorov equation on fractal curves. This is done using the recently developed calculus on fractals, which allows one to write differential equations on fractal curves. As an important special case, the diffusion and drift coefficients are obtained, for a suitable transition probability to get the diffusion equation on fractal curves. This equation is of first order in time, and, in space variable it involves derivatives of order α, α being the dimension of the curve. An exact solution of this equation with localized initial condition shows departure from ordinary diffusive behavior due to underlying fractal space in which diffusion is taking place and manifests a subdiffusive behavior. We further point out that the dimension of the fractal path can be estimated from the distribution function.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077913000659
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:52:y:2013:i:c:p:30-35

DOI: 10.1016/j.chaos.2013.03.013

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:52:y:2013:i:c:p:30-35