Finite-time uniform stability of functional differential equations with applications in network synchronization control
Cheng Hu,
Xuehui Mei,
Juan Yu and
Haijun Jiang
Chaos, Solitons & Fractals, 2014, vol. 62-63, 10-22
Abstract:
In this paper, we investigate finite-time uniform stability of functional differential equations with applications in network synchronization control. First, a Razumikhin-type theorem is derived to ensure finite-time uniform stability of functional differential equations. Based on the theoretical results, finite-time uniform synchronization is proposed for a class of delayed neural networks and delayed complex dynamical networks by designing nontrivial and simple control strategies and some novel criteria are established. Especially, a feasible region of the control parameters for each neuron is derived for the realization of finite-time uniform synchronization of the addressed neural networks, which provide a great convenience for the application of the theoretical results. Finally, two numerical examples with numerical simulations are provided to show the effectiveness and feasibility of the theoretical results.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914000228
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:62-63:y:2014:i::p:10-22
DOI: 10.1016/j.chaos.2014.02.006
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().