Effect of self-interaction on the phase diagram of a Gibbs-like measure derived by a reversible Probabilistic Cellular Automata
Emilio N.M. Cirillo,
Pierre-Yves Louis,
Wioletta M. Ruszel and
Cristian Spitoni
Chaos, Solitons & Fractals, 2014, vol. 64, issue C, 36-47
Abstract:
Cellular Automata are discrete-time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata (PCA), are discrete time Markov chains on lattice with finite single-cell states whose distinguishing feature is the parallel character of the updating rule. We study the ground states of the Hamiltonian and the low-temperature phase diagram of the related Gibbs measure naturally associated with a class of reversible PCA, called the cross PCA. In such a model the updating rule of a cell depends indeed only on the status of the five cells forming a cross centered at the original cell itself. In particular, it depends on the value of the center spin (self-interaction). The goal of the paper is that of investigating the role played by the self-interaction parameter in connection with the ground states of the Hamiltonian and the low-temperature phase diagram of the Gibbs measure associated with this particular PCA.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077913002178
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:64:y:2014:i:c:p:36-47
DOI: 10.1016/j.chaos.2013.12.001
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().