Pattern recognition at different scales: A statistical perspective
Matteo Colangeli,
Francesco Rugiano and
Eros Pasero
Chaos, Solitons & Fractals, 2014, vol. 64, issue C, 48-66
Abstract:
In this paper we borrow concepts from Information Theory and Statistical Mechanics to perform a pattern recognition procedure on a set of X-ray hazelnut images. We identify two relevant statistical scales, whose ratio affects the performance of a machine learning algorithm based on statistical observables, and discuss the dependence of such scales on the image resolution. Finally, by averaging the performance of a Support Vector Machines algorithm over a set of training samples, we numerically verify the predicted onset of an “optimal” scale of resolution, at which the pattern recognition is favoured.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077913001963
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:64:y:2014:i:c:p:48-66
DOI: 10.1016/j.chaos.2013.10.006
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().