Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status
Dipak Ghosh,
Srimonti Dutta and
Sayantan Chakraborty
Chaos, Solitons & Fractals, 2014, vol. 67, issue C, 1-10
Abstract:
This paper reports a study of EEG data of epileptic patients in terms of multifractal detrended cross-correlation analysis (MF-DXA). The EEG clinical data were obtained from the EEG Database available with the Clinic of Epileptology of the University Hospital of Bonn, Germany. The data sets (C, D, and E) were taken from five epileptic patients undergoing presurgical evaluations. The data sets consist of intracranial EEG recordings during seizure-free intervals (interictal periods) from within the epileptogenic zone (D) and from the hippocampal formation of the opposite hemisphere of the epileptic patients’ brain, respectively (C). The data set (E) was recorded during seizure activity (ictal periods). MF-DXA is a very rigorous and robust tool for assessment of cross-correlation among two nonlinear time series. The study reveals the degree of cross-correlation is more among seizure and seizure free interval in epileptogenic zone. These data are very significant for diagnosis, onset and prognosis of epileptic patients.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914001052
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:67:y:2014:i:c:p:1-10
DOI: 10.1016/j.chaos.2014.06.010
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().