Analysis on limit cycle of fractional-order van der Pol oscillator
Yongjun Shen,
Shaopu Yang and
Chuanyi Sui
Chaos, Solitons & Fractals, 2014, vol. 67, issue C, 94-102
Abstract:
In this paper the approximately analytical solution of van der Pol (VDP) oscillator with two kinds of fractional-order derivatives is obtained based on averaging method. Two equivalent system parameters, i.e. equivalent damping coefficient and equivalent stiffness coefficient, are defined, which could characterize the effects of the fractional parameters on the limit cycle in fractional-order VDP oscillator. The same points and differences between the traditional integer-order and fractional-order VDP oscillator are analyzed and summarized in detail. The differences are focused on the convergence speed and frequency characteristic of the limit cycle in VDP oscillator. The comparison between the analytical and numerical solution verifies the correctness and satisfactory precision of the approximately analytical solution. At last, the effects of the fractional parameters on the convergence speed and frequency characteristic of the limit cycle in fractional-order VDP oscillator are illustrated based on some typical system parameters.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791400109X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:67:y:2014:i:c:p:94-102
DOI: 10.1016/j.chaos.2014.07.001
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().