Navier Stokes model of solitary wave collision
Alireza Lohrasbi and
Moharram D. Pirooz
Chaos, Solitons & Fractals, 2014, vol. 68, issue C, 139-150
Abstract:
Wave collision and its interaction characteristics is one of the important challenges in coastal engineering. This article concerns the collision of solitary waves over a horizontal bottom considering unsteady, incompressible viscous flow with free surface. The method solves the two dimensional Naiver–Stokes equations for conservation of momentum, continuity equation, and full nonlinear kinematic free-surface equation for Newtonian fluids, as the governing equations in a vertical plan. A mapping was developed to trace the deformed free surface encountered during wave propagation, transforms and interaction by transferring the governing equations from the physical domain to a computational domain. Also a numerical scheme is developed using finite element modeling technique in order to predict the solitary wave collision. Consequently results compared with other researches and show the inelastic behavior of solitary wave collision.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914001398
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:68:y:2014:i:c:p:139-150
DOI: 10.1016/j.chaos.2014.08.003
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().