EconPapers    
Economics at your fingertips  
 

Stability and bifurcation analysis of a mathematical model for tumor–immune interaction with piecewise constant arguments of delay

Fuat Gurcan, Senol Kartal, Ilhan Ozturk and Fatma Bozkurt

Chaos, Solitons & Fractals, 2014, vol. 68, issue C, 169-179

Abstract: In this paper, we propose and analyze a Lotka–Volterra competition like model which consists of system of differential equations with piecewise constant arguments of delay to study of interaction between tumor cells and Cytotoxic T lymphocytes (CTLs). In order to get local and global behaviors of the system, we use Schur–Cohn criterion and constructed a Lyapunov function. Some algebraic conditions which satisfy local and global stability of the system are obtained. In addition, we investigate the possible bifurcation types for the system and observe that the system may undergo Neimark–Sacker bifurcation. Moreover, it is predicted a threshold value above which there is uncontrollable tumor growth, and below periodic solutions that leading to tumor dormant state occur.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914001374
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:68:y:2014:i:c:p:169-179

DOI: 10.1016/j.chaos.2014.08.001

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:68:y:2014:i:c:p:169-179