Analysis of a viral infection model with immune impairment, intracellular delay and general non-linear incidence rate
Eric Avila-Vales,
Noé Chan-Chí and
Gerardo García-Almeida
Chaos, Solitons & Fractals, 2014, vol. 69, issue C, 1-9
Abstract:
In this article we study the dynamical behaviour of a intracellular delayed viral infection with immune impairment model and general non-linear incidence rate. Several techniques, including a non-linear stability analysis by means of the Lyapunov theory and sensitivity analysis, have been used to reveal features of the model dynamics. The classical threshold for the basic reproductive number is obtained: if the basic reproductive number of the virus is less than one, the infection-free equilibrium is globally asymptotically stable and the infected equilibrium is globally asymptotically stable if the basic reproductive number is higher than one.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914001453
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:69:y:2014:i:c:p:1-9
DOI: 10.1016/j.chaos.2014.08.009
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().