EconPapers    
Economics at your fingertips  
 

Universalities in the chaotic generalized Moore & Spiegel equations

Christophe Letellier and Jean-Marc Malasoma

Chaos, Solitons & Fractals, 2014, vol. 69, issue C, 40-49

Abstract: By investigating the topology of chaotic solutions to the generalized Moore and Spiegel equations, we address the question how the solutions of nonlinear dynamical systems are dependent on the nature of the nonlinearity. In these generalized jerk equations, the single nonlinear term has a parity which depends on unu̇. The system has an inversion symmetry when n is even and no symmetry property when n is odd. It is shown that the topology of chaotic solutions only depends on the parity of n, that is, on the symmetry properties and not on the degree of nonlinearity. The value of n only affects the possibility to develop the chaotic solution, that is, to increase the number of unstable periodic orbits within the attractor.

Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914001568
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:69:y:2014:i:c:p:40-49

DOI: 10.1016/j.chaos.2014.09.002

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:69:y:2014:i:c:p:40-49