Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain
Debaldev Jana,
Rashmi Agrawal and
Ranjit Kumar Upadhyay
Chaos, Solitons & Fractals, 2014, vol. 69, issue C, 50-63
Abstract:
An attempt has been made to understand the role of top predator interference and gestation delay on the dynamics of a three species food chain model involving intermediate and top predator populations. Interaction between the prey and an intermediate predator follows the Volterra scheme (with Holling type IV functional response), while that between the top predator and its prey depends on Beddington–DeAngelis type functional response. Stability switches and Hopf-bifurcation occurs when the delay crosses some critical value. Model system exhibits irregular behavior when the interference is high or gestation period is larger than its critical value. Furthermore, the direction of Hopf-bifurcation and the stability of the bifurcating periodic solutions are determined using the center manifold theorem and normal form theory. Computer simulations have been carried out to illustrate the analytical findings. Different diagnostic tests, like, initial sensitivity, Lyapunov exponent, recurrence plot tests ensure the complex dynamical behavior of the model system. Finally, we observed the subcritical Hopf-bifurcation phenomena in the designed model system and the bifurcating periodic solution is unstable for the considered set of parameter values.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914001556
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:69:y:2014:i:c:p:50-63
DOI: 10.1016/j.chaos.2014.09.001
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().