Reconstruction of systems with impulses and delays from time series data
Jong-ha Jeon and
Pilwon Kim
Chaos, Solitons & Fractals, 2014, vol. 69, issue C, 64-73
Abstract:
In this paper, we present an approach to identification of dynamical systems with irregular impulses and time delays. The suggested method enables one to reconstruct the underlying differential equations, using the l1-minimization technique in signal processing which takes advantage of the signal’s sparseness. Based on the idea that irregular impulses can be regarded as sparse error in the fitting procedure, we obtain an efficient algorithm for reconstructions that separates the regular parts of dynamics from impulsive ones. From time series data sampled from an impulsive ecological models, the suggested method restores an essential dynamics of the original systems. The method also applies to chaotic systems perturbed by intermittent impacts and successfully captures dynamics reflecting qualitative behavior independent of impacts. In addition, we can identify a time-delay Lotka–Volterra model with no prior information on delay time given, to which conventional parameter estimate methods are hardly applicable.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914001581
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:69:y:2014:i:c:p:64-73
DOI: 10.1016/j.chaos.2014.09.004
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().