A weakly mixing dynamical system with the whole space being a transitive extremal distributionally scrambled set
Lidong Wang,
Xiaoping Ou and
Yuelin Gao
Chaos, Solitons & Fractals, 2015, vol. 70, issue C, 130-133
Abstract:
It is known that the whole space can be a Li–Yorke scrambled set in a compact dynamical system, but this does not hold for distributional chaos. In this paper we construct a noncompact weekly mixing dynamical system, and prove that the whole space is a transitive extremal distributionally scrambled set in this system.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914002021
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:70:y:2015:i:c:p:130-133
DOI: 10.1016/j.chaos.2014.11.012
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().