EconPapers    
Economics at your fingertips  
 

A fractal approach to the dark silicon problem: A comparison of 3D computer architectures – Standard slices versus fractal Menger sponge geometry

Richard Herrmann

Chaos, Solitons & Fractals, 2015, vol. 70, issue C, 38-41

Abstract: The dark silicon problem, which limits the power-growth of future computer generations, is interpreted as a heat energy transport problem when increasing the energy emitting surface area within a given volume. A comparison of two 3D-configuration models, namely a standard slicing and a fractal surface generation within the Menger sponge geometry is presented. In the following it is shown, that for iteration orders n>3 the fractal model shows increasingly better thermal behavior. As a consequence cooling problems may be minimized by using a fractal architecture.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791400188X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:70:y:2015:i:c:p:38-41

DOI: 10.1016/j.chaos.2014.11.004

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:70:y:2015:i:c:p:38-41