Chaotic dynamics of the vibro-impact system under bounded noise perturbation
Jinqian Feng and
Junli Liu
Chaos, Solitons & Fractals, 2015, vol. 73, issue C, 10-16
Abstract:
In this paper, chaotic dynamics of the vibro-impact system under bounded noise excitation is investigated by an extended Melnikov method. Firstly, the Melnikov method in the deterministic vibro-impact system is extended to the stochastic case. Then, a typical stochastic Duffing vibro-impact system is given to application. The analytic conditions for occurrence of chaos are derived by using the random Melnikov process in the mean-square-value sense. In addition, the numerical simulations confirm the validity of analytic results. Also, the influences of interesting system parameters on the chaotic dynamics are discussed.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915000041
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:73:y:2015:i:c:p:10-16
DOI: 10.1016/j.chaos.2015.01.003
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().