Formula for Fibonacci sequence with arbitrary initial numbers
Ilija Tanackov,
Ilija Kovačević and
Jovan Tepić
Chaos, Solitons & Fractals, 2015, vol. 73, issue C, 115-119
Abstract:
In this paper the formula for Fibonacci sequences with arbitrary initial numbers has been established by using damped oscillation equation. The formula has an exponential and an oscillatory part, it does not separate the indexes of odd and even members of the series and it is applicable on the continual domain. With elementary conditions the formula is reduced to Lucas series, and the square of Lucas series has a catalytic role in the relation of hyperbolic and trigonometric cosine. A complex function is given and the length of Fibonacci spiral is calculated. Natural phenomena support the validity of the proposed concept.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915000223
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:73:y:2015:i:c:p:115-119
DOI: 10.1016/j.chaos.2015.01.015
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().