Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters
Zhiyong Ye,
He Zhang,
Hongyu Zhang,
Hua Zhang and
Guichen Lu
Chaos, Solitons & Fractals, 2015, vol. 73, issue C, 156-165
Abstract:
This paper addresses the mean square exponential stabilization problem of stochastic bidirectional associative memory (BAM) neural networks with Markovian jumping parameters and time-varying delays. By establishing a proper Lyapunov–Krasovskii functional and combining with LMIs technique, several sufficient conditions are derived for ensuring exponential stabilization in the mean square sense of such stochastic BAM neural networks. In addition, the achieved results are not difficult to verify for determining the mean square exponential stabilization of delayed BAM neural networks with Markovian jumping parameters and impose less restrictive and less conservative than the ones in previous papers. Finally, numerical results are given to show the effectiveness and applicability of the achieved results.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915000211
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:73:y:2015:i:c:p:156-165
DOI: 10.1016/j.chaos.2015.01.014
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().