Equilibrium switching and mathematical properties of nonlinear interaction networks with concurrent antagonism and self-stimulation
Jomar Fajardo Rabajante and
Cherryl Ortega Talaue
Chaos, Solitons & Fractals, 2015, vol. 73, issue C, 166-182
Abstract:
Concurrent decision-making model (CDM) of interaction networks with more than two antagonistic components represents various biological systems, such as gene interaction, species competition and mental cognition. The CDM model assumes sigmoid kinetics where every component stimulates itself but concurrently represses the others. Here we prove generic mathematical properties (e.g., location and stability of steady states) of n-dimensional CDM with either symmetric or asymmetric reciprocal antagonism between components. Significant modifications in parameter values serve as biological regulators for inducing steady state switching by driving a temporal state to escape an undesirable equilibrium. Increasing the maximal growth rate and decreasing the decay rate can expand the basin of attraction of a steady state that contains the desired dominant component. Perpetually adding an external stimulus could shut down multi-stability of the system which increases the robustness of the system against stochastic noise. We further show that asymmetric interaction forming a repressilator-type network generates oscillatory behavior.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915000259
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:73:y:2015:i:c:p:166-182
DOI: 10.1016/j.chaos.2015.01.018
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().