Chaos in Vallis’ asymmetric Lorenz model for El Niño
B.M. Garay and
B. Indig
Chaos, Solitons & Fractals, 2015, vol. 75, issue C, 253-262
Abstract:
We consider Vallis’ symmetric and asymmetric Lorenz models for El Niño—systems of autonomous ordinary differential equations in 3D—with the usual parameters and, in both cases, by using rigorous numerics, we locate topological horseshoes in iterates of Poincaré return maps. The computer-assisted proofs follow the standard Mischaikow–Mrozek–Zgliczynski approach. The novelty is a dimension reduction method, a direct exploitation of numerical Lorenz-like maps associated to the two components of the Poincaré section.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915000594
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:75:y:2015:i:c:p:253-262
DOI: 10.1016/j.chaos.2015.02.015
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().