Sato theory on the q-Toda hierarchy and its extension
Chuanzhong Li
Chaos, Solitons & Fractals, 2015, vol. 76, issue C, 10-23
Abstract:
In this paper, we construct the Sato theory including the Hirota bilinear equations and tau function of a new q-deformed Toda hierarchy (QTH). Meanwhile the Block type additional symmetry and bi-Hamiltonian structure of this hierarchy are given. From Hamiltonian tau symmetry, we give another definition of tau function of this hierarchy. Afterwards, we extend the q-Toda hierarchy to an extended q-Toda hierarchy (EQTH) which satisfy a generalized Hirota quadratic equation in terms of generalized vertex operators. The Hirota quadratic equation might have further application in Gromov–Witten theory. The corresponding Sato theory including multi-fold Darboux transformations of this extended hierarchy is also constructed. At last, we construct the multicomponent extension of the q-Toda hierarchy and show the integrability including its bi-Hamiltonian structure, tau symmetry and conserved densities.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915000892
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:76:y:2015:i:c:p:10-23
DOI: 10.1016/j.chaos.2015.03.008
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().