EconPapers    
Economics at your fingertips  
 

Consciousness as a state of matter

Max Tegmark

Chaos, Solitons & Fractals, 2015, vol. 76, issue C, 238-270

Abstract: We examine the hypothesis that consciousness can be understood as a state of matter, “perceptronium”, with distinctive information processing abilities. We explore four basic principles that may distinguish conscious matter from other physical systems such as solids, liquids and gases: the information, integration, independence and dynamics principles. If such principles can identify conscious entities, then they can help solve the quantum factorization problem: why do conscious observers like us perceive the particular Hilbert space factorization corresponding to classical space (rather than Fourier space, say), and more generally, why do we perceive the world around us as a dynamic hierarchy of objects that are strongly integrated and relatively independent? Tensor factorization of matrices is found to play a central role, and our technical results include a theorem about Hamiltonian separability (defined using Hilbert–Schmidt superoperators) being maximized in the energy eigenbasis. Our approach generalizes Giulio Tononi’s integrated information framework for neural-network-based consciousness to arbitrary quantum systems, and we find interesting links to error-correcting codes, condensed matter criticality, and the Quantum Darwinism program, as well as an interesting connection between the emergence of consciousness and the emergence of time.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915000958
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:76:y:2015:i:c:p:238-270

DOI: 10.1016/j.chaos.2015.03.014

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:76:y:2015:i:c:p:238-270