Orbital stability and dynamical behaviors of solitary waves for the Camassa–Holm equation with quartic nonlinearity
Jiuli Yin,
Qianqian Xing and
Lixin Tian
Chaos, Solitons & Fractals, 2015, vol. 76, issue C, 40-46
Abstract:
In this paper we prove that the Camassa–Holm equation with quartic nonlinearity is non-integrable via the Painlevé method. The orbital stability of solitary waves for this equation is investigated by constructing a functional extremum problem. This result demonstrates that the resulting solitary wave is unstable when its speed lies in the narrow region of the critical value that connects with the bifurcation condition. In contrast when the speed surpasses the narrow region, the solitary wave is stable. In addition, the stable solitary wave turns into a chaotic state when is driven externally. If a damping term controller is added to the perturbed equation, the solitary wave can also propagate stably under a certain condition. Finally our numerical results show that the perturbed equation is not well controlled when a certain resonant-frequency occurs and is well controlled with a smaller wave speed as well as a higher nonlinear convection.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915000831
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:76:y:2015:i:c:p:40-46
DOI: 10.1016/j.chaos.2015.03.002
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().