A note on h(x) − Fibonacci quaternion polynomials
Paula Catarino
Chaos, Solitons & Fractals, 2015, vol. 77, issue C, 1-5
Abstract:
In this paper, we introduce h(x) − Fibonacci quaternion polynomials that generalize the k − Fibonacci quaternion numbers, which in their turn are a generalization of the Fibonacci quaternion numbers. We also present a Binet-style formula, ordinary generating function and some basic identities for the h(x) − Fibonacci quaternion polynomial sequences.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915001289
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:77:y:2015:i:c:p:1-5
DOI: 10.1016/j.chaos.2015.04.017
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().