Stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise
Yongge Yang,
Wei Xu,
Xudong Gu and
Yahui Sun
Chaos, Solitons & Fractals, 2015, vol. 77, issue C, 190-204
Abstract:
The stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise is considered. Firstly, the generalized harmonic function technique is applied to the fractional self-excited systems. Based on this approach, the original fractional self-excited systems are reduced to equivalent stochastic systems without fractional derivative. Then, the analytical solutions of the equivalent stochastic systems are obtained by using the stochastic averaging method. Finally, in order to verify the theoretical results, the two most typical self-excited systems with fractional derivative, namely the fractional van der Pol oscillator and fractional Rayleigh oscillator, are discussed in detail. Comparing the analytical and numerical results, a very satisfactory agreement can be found. Meanwhile, the effects of the fractional order, the fractional coefficient, and the intensity of Gaussian white noise on the self-excited fractional systems are also discussed in detail.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915001654
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:77:y:2015:i:c:p:190-204
DOI: 10.1016/j.chaos.2015.05.029
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().