Detection of directional eye movements based on the electrooculogram signals through an artificial neural network
Hande Erkaymaz,
Mahmut Ozer and
İlhami Muharrem Orak
Chaos, Solitons & Fractals, 2015, vol. 77, issue C, 225-229
Abstract:
The electrooculogram signals are very important at extracting information about detection of directional eye movements. Therefore, in this study, we propose a new intelligent detection model involving an artificial neural network for the eye movements based on the electrooculogram signals. In addition to conventional eye movements, our model also involves the detection of tic and blinking of an eye. We extract only two features from the electrooculogram signals, and use them as inputs for a feed-forwarded artificial neural network. We develop a new approach to compute these two features, which we call it as a movement range. The results suggest that the proposed model have a potential to become a new tool to determine the directional eye movements accurately.
Keywords: Electrooculogram; Artificial neural network; Eye movements; System modeling; Movement range (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915001691
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:77:y:2015:i:c:p:225-229
DOI: 10.1016/j.chaos.2015.05.033
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().