EconPapers    
Economics at your fingertips  
 

Bifurcation analysis of a delayed mathematical model for tumor growth

Subhas Khajanchi

Chaos, Solitons & Fractals, 2015, vol. 77, issue C, 264-276

Abstract: In this study, we present a modified mathematical model of tumor growth by introducing discrete time delay in interaction terms. The model describes the interaction between tumor cells, healthy tissue cells (host cells) and immune effector cells. The goal of this study is to obtain a better compatibility with reality for which we introduced the discrete time delay in the interaction between tumor cells and host cells. We investigate the local stability of the non-negative equilibria and the existence of Hopf-bifurcation by considering the discrete time delay as a bifurcation parameter. We estimate the length of delay to preserve the stability of bifurcating periodic solutions, which gives an idea about the mode of action for controlling oscillations in the tumor growth. Numerical simulations of the model confirm the analytical findings.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791500171X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:77:y:2015:i:c:p:264-276

DOI: 10.1016/j.chaos.2015.06.001

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:77:y:2015:i:c:p:264-276