Multifractal characterization of cerebrovascular dynamics in newborn rats
A.N. Pavlov,
O.V. Semyachkina-Glushkovskaya,
V.V. Lychagov,
A.S. Abdurashitov,
O.N. Pavlova,
O.A. Sindeeva and
S.S. Sindeev
Chaos, Solitons & Fractals, 2015, vol. 77, issue C, 6-10
Abstract:
In this paper we study the cerebrovascular dynamics in newborn rats using the wavelet-based multifractal formalism in order to reveal effective markers of early pathological changes in the macro- and microcirculation at the hidden stage of the development of intracranial hemorrhage (ICH). We demonstrate that the singularity spectrum estimated with the wavelet-transform modulus maxima (WTMM) technique allows clear characterization of a reduced complexity of blood flow dynamics and changes of the correlation properties at the transformation of normal physiological processes into pathological dynamics that are essentially different at the level of large and small blood vessels.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915001228
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:77:y:2015:i:c:p:6-10
DOI: 10.1016/j.chaos.2015.04.011
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().