Self-organization of the vorticity field in two-dimensional quasi-ideal fluids: The statistical and field-theoretical formulations
F. Spineanu and
Mihaela Vlad
Chaos, Solitons & Fractals, 2015, vol. 81, issue PB, 473-479
Abstract:
The natural tendency of the quasi-ideal two-dimensional fluid to evolve by self-organization to highly coherent flow patterns can be formulated as a statistical and as a field theoretical problem. We show that both can derive the asymptotic ordered flows as solutions of the sinh-Poisson equation but the two approaches are different in their possibilities to describe the dynamic phase of the vorticity self-organization. This comparison suggests that, at least for relaxation phenomena, the statistical equilibrium and the geometric-algebraic property of self-duality are two aspects of aspects of the same reality.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915001708
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:81:y:2015:i:pb:p:473-479
DOI: 10.1016/j.chaos.2015.05.034
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().