Condensation and equilibration in an urn model
Federico Corberi,
Giuseppe Gonnella and
Alessandro Mossa
Chaos, Solitons & Fractals, 2015, vol. 81, issue PB, 510-518
Abstract:
After reviewing the general scaling properties of aging systems, we present a numerical study of the slow evolution induced in the zeta urn model by a quench from a high temperature to a lower one where a condensed equilibrium phase exists. By considering both one-time and two-time quantities we show that the features of the model fit into the general framework of aging systems. In particular, its behavior can be interpreted in terms of the simultaneous existence of equilibrated and aging degrees with different scaling properties.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915001484
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:81:y:2015:i:pb:p:510-518
DOI: 10.1016/j.chaos.2015.05.012
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().