Exploring the applications of fractional calculus: Hierarchically built semiflexible polymers
Florian Fürstenberg,
Maxim Dolgushev and
Alexander Blumen
Chaos, Solitons & Fractals, 2015, vol. 81, issue PB, 527-533
Abstract:
In this article we study, through extensions of the generalized Gaussian scheme, the dynamics of semiflexible treelike polymers under the influence of external forces acting on particular (say, charged) monomers. Semiflexibility is introduced following our previous work (Dolgushev and Blumen, 2009 [15]), a procedure which allows one to study treelike structures with arbitrary stiffness and branching. Exemplarily, we illustrate the procedure using linear chains and hyperbranched polymers modeled through Vicsek fractals, and obtain in every case the monomer displacement averaged over the structure. Anomalous behavior manifests itself in the intermediate time region, where the different fractal architectures show distinct scaling behaviors. These behaviors are due to the power law behavior of the spectral density and lead, for arbitrary pulling forces, based on causality and the linear superposition principle, to fractional calculus expressions, in accordance to former phenomenological fractional laws in polymer physics.
Keywords: Anomalous diffusion; Fractals; Polymers; Hyperbranched; Semiflexible (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915001988
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:81:y:2015:i:pb:p:527-533
DOI: 10.1016/j.chaos.2015.07.006
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().