EconPapers    
Economics at your fingertips  
 

Does ultra-slow diffusion survive in a three dimensional cylindrical comb?

A. Iomin and V. Méndez

Chaos, Solitons & Fractals, 2016, vol. 82, issue C, 142-147

Abstract: We present an exact analytical result on ultra-slow diffusion by solving a Fokker–Planck equation, which describes anomalous transport in a three dimensional (3D) comb. This 3D cylindrical comb consists of a cylinder of discs of either infinite or finite radius, threaded on a backbone. It is shown that the ultra-slow particle spreading along the backbone is described by the mean squared displacement (MSD) of the order of ln (t). This phenomenon takes place only for normal two dimensional diffusion inside the infinite secondary branches (discs). When the secondary branches have finite boundaries, the ultra-slow motion is a transient process and the asymptotic behavior is normal diffusion. In another example, when anomalous diffusion takes place in the secondary branches, a destruction of ultra-slow (logarithmic) diffusion takes place as well. As the result, one observes “enhanced” subdiffusion with the MSD ∼t1−αln(t), where 0 < α < 1.

Keywords: Comb model; Cylindrical comb; Subdiffusion; Ultra-slow diffusion (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915003823
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:82:y:2016:i:c:p:142-147

DOI: 10.1016/j.chaos.2015.11.017

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:82:y:2016:i:c:p:142-147