EconPapers    
Economics at your fingertips  
 

On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions

Bashir Ahmad, Sotiris K. Ntouyas and Ahmed Alsaedi

Chaos, Solitons & Fractals, 2016, vol. 83, issue C, 234-241

Abstract: We investigate a coupled system of fractional differential equations with nonlinearities depending on the unknown functions as well as their lower order fractional derivatives supplemented with coupled nonlocal and integral boundary conditions. We emphasize that the problem considered in the present setting is new and provides further insight into the study of nonlocal nonlinear coupled boundary value problems. We present two results in this paper: the first one dealing with the uniqueness of solutions for the given problem is established by applying contraction mapping principle, while the second one concerning the existence of solutions is obtained via Leray–Schauder’s alternative. The main results are well illustrated with the aid of examples.

Keywords: Fractional differential equations; Coupled system; Nonlocal conditions; Integral boundary conditions; Fixed point (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915004324
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:83:y:2016:i:c:p:234-241

DOI: 10.1016/j.chaos.2015.12.014

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:83:y:2016:i:c:p:234-241