On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions
Bashir Ahmad,
Sotiris K. Ntouyas and
Ahmed Alsaedi
Chaos, Solitons & Fractals, 2016, vol. 83, issue C, 234-241
Abstract:
We investigate a coupled system of fractional differential equations with nonlinearities depending on the unknown functions as well as their lower order fractional derivatives supplemented with coupled nonlocal and integral boundary conditions. We emphasize that the problem considered in the present setting is new and provides further insight into the study of nonlocal nonlinear coupled boundary value problems. We present two results in this paper: the first one dealing with the uniqueness of solutions for the given problem is established by applying contraction mapping principle, while the second one concerning the existence of solutions is obtained via Leray–Schauder’s alternative. The main results are well illustrated with the aid of examples.
Keywords: Fractional differential equations; Coupled system; Nonlocal conditions; Integral boundary conditions; Fixed point (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915004324
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:83:y:2016:i:c:p:234-241
DOI: 10.1016/j.chaos.2015.12.014
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().