EconPapers    
Economics at your fingertips  
 

The Poisson aggregation process

Iddo Eliazar

Chaos, Solitons & Fractals, 2016, vol. 83, issue C, 38-53

Abstract: In this paper we introduce and analyze the Poisson Aggregation Process (PAP): a stochastic model in which a random collection of random balls is stacked over a general metric space. The scattering of the balls’ centers follows a general Poisson process over the metric space, and the balls’ radii are independent and identically distributed random variables governed by a general distribution. For each point of the metric space, the PAP counts the number of balls that are stacked over it. The PAP model is a highly versatile spatial counterpart of the temporal M/G/∞ model in queueing theory. The surface of the moon, scarred by circular meteor-impact craters, exemplifies the PAP model in two dimensions: the PAP counts the number of meteor-impacts that any given moon-surface point sustained. A comprehensive analysis of the PAP is presented, and the closed-form results established include: general statistics, stationary statistics, short-range and long-range dependencies, a Central Limit Theorem, an Extreme Limit Theorem, and fractality.

Keywords: Poisson processes; M/G/∞ process; Short-range and long-range dependence; Central limit theorem; Extreme limit theorem (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915003847
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:83:y:2016:i:c:p:38-53

DOI: 10.1016/j.chaos.2015.11.019

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:83:y:2016:i:c:p:38-53