EconPapers    
Economics at your fingertips  
 

Envelope solitons in a left-handed nonlinear transmission line with Josephson junction

Saidou Abdoulkary, L.Q. English and Alidou Mohamadou

Chaos, Solitons & Fractals, 2016, vol. 85, issue C, 44-50

Abstract: We consider a nonlinear left-handed transmission line that incorporates an array of Josephson junctions in its periodic lattice structure. We show that the system dynamics is described by a discrete sine-Gordon-like equation, where the left-handedness of the lattice manifests in the form of a non-standard second-time- derivative term. Since this modified discrete sine-Gordon equation has not yet been extensively studied in the literature, this paper opens up the possibility of additional mathematical analysis. It is also intriguing that by means of a semi-discrete approximation we can derive a nonlinear Schrödinger equation and thus show that the system supports both bright and dark envelope soliton solutions depending on the choice of carrier frequency. The left-handedness of the network is explicitly confirmed in numerical simulations which demonstrate the backward propagation of the bright and dark soliton, in good agreement with analytical predictions.

Keywords: Josephson junction; Left-handed transmission line; Envelope soliton (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916300029
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:85:y:2016:i:c:p:44-50

DOI: 10.1016/j.chaos.2016.01.011

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:85:y:2016:i:c:p:44-50