EconPapers    
Economics at your fingertips  
 

On different forms of self similarity

R.K. Aswathy and Sunil Mathew

Chaos, Solitons & Fractals, 2016, vol. 87, issue C, 102-108

Abstract: Fractal geometry is mainly based on the idea of self-similar forms. To be self-similar, a shape must able to be divided into parts that are smaller copies, which are more or less similar to the whole. There are different forms of self similarity in nature and mathematics. In this paper, some of the topological properties of super self similar sets are discussed. It is proved that in a complete metric space with two or more elements, the set of all non super self similar sets are dense in the set of all non-empty compact sub sets. It is also proved that the product of self similar sets are super self similar in product metric spaces and that the super self similarity is preserved under isometry. A characterization of super self similar sets using contracting sub self similarity is also presented. Some relevant counterexamples are provided. The concepts of exact super and sub self similarity are introduced and a necessary and sufficient condition for a set to be exact super self similar in terms of condensation iterated function systems (Condensation IFS’s) is obtained. A method to generate exact sub self similar sets using condensation IFS’s and the denseness of exact super self similar sets are also discussed.

Keywords: Hausdorff metric space; Contracting similarity; Self similarity; Fractal (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791630100X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:87:y:2016:i:c:p:102-108

DOI: 10.1016/j.chaos.2016.03.021

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:87:y:2016:i:c:p:102-108