Stability switches and bifurcation in a two-degrees-of-freedom nonlinear quarter-car with small time-delayed feedback control
G.I. Koumene Taffo,
M. Siewe Siewe and
C. Tchawoua
Chaos, Solitons & Fractals, 2016, vol. 87, issue C, 226-239
Abstract:
In this paper, we investigate a two-degrees-of-freedom nonlinear quarter-car model with time-delayed feedback control. It is well known that a time delay has destabilizing effects in mathematical models. However, delays are not necessarily destabilizing. In this work we explore a system where a time delay can be both stabilizing and destabilizing. Using the generalized Sturm criterion, the critical control gain for the delay-independent stability region and critical time delays for stability switches are derived. It is shown that there is a small parameter region for delay-independently stability of the system. Once the controlled system with time delay is not delay-independently stable, the system may undergo stability switches with the variation of the time delay. These stability switches correspond to Hopf bifurcations that occur when the time delays cross critical values. Properties of Hopf bifurcation such as direction and stability of bifurcating periodic solutions are determined by using the normal form theory and centre manifold theorem. Numerical simulations are provided to support the theoretical analysis. The critical conditions can provide a theoretical guidance for the design of vehicles with significant reduction of vibration in order to increase passengers ride comfort.
Keywords: Quarter-car; Time-delayed; Feedback control; Stability switches; Hopf bifurcation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916301370
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:87:y:2016:i:c:p:226-239
DOI: 10.1016/j.chaos.2016.04.012
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().