A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion
Luca Vincenzo Ballestra,
Graziella Pacelli and
Davide Radi
Chaos, Solitons & Fractals, 2016, vol. 87, issue C, 240-248
Abstract:
We deal with the problem of pricing barrier options on an underlying described by the mixed fractional Brownian model. To this aim, we consider the initial-boundary value partial differential problem that yields the option price and we derive an integral representation of it in which the integrand functions must be obtained solving Volterra equations of the first kind. In addition, we develop an ad-hoc numerical procedure to solve the integral equations obtained. Numerical simulations reveal that the proposed method is extremely accurate and fast, and performs significantly better than the finite difference method.
Keywords: Mixed fractional Brownian motion; Barrier option pricing; Numerical method; Integral equations; Product integration (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916301333
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:87:y:2016:i:c:p:240-248
DOI: 10.1016/j.chaos.2016.04.008
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().