Long-lived discrete breathers in free-standing graphene
Alberto Fraile,
Emmanuel N. Koukaras,
Konstantinos Papagelis,
Nikos Lazarides and
G.P. Tsironis
Chaos, Solitons & Fractals, 2016, vol. 87, issue C, 262-267
Abstract:
Intrinsic localized modes or discrete breathers (DBs) are investigated by molecular dynamics simulations in free-standing graphene. DBs are generated either through thermal quenching of the graphene lattice or by proper initialization, with frequencies and lifetimes sensitively depending on the interatomic potential describing the carbon-carbon interaction. In the most realistic scenario, for which temperature-dependent molecular dynamics simulations in three dimensions using a graphene-specific interatomic potential are performed, the DBs lifetimes increase to hundreds of picoseconds even at relatively high temperatures. These lifetimes are much higher than those anticipated from earlier calculations, and may enable direct breather observation in Raman spectroscopy experiments. Our simulations provide clear estimation for the temperatures in which DBs are expected to be thermally excited (1500–2000K) representing a step forward for understanding the nonlinear physics of graphene and designing experiments in order to detect DBs, with possible impact in graphene-based future technological applications.
Keywords: Breathers; Graphene; Molecular dynamics (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916301461
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:87:y:2016:i:c:p:262-267
DOI: 10.1016/j.chaos.2016.04.015
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().