A new modified resource budget model for nonlinear dynamics in citrus production
Xujun Ye and
Kenshi Sakai
Chaos, Solitons & Fractals, 2016, vol. 87, issue C, 51-60
Abstract:
Alternate bearing or masting is a general yield variability phenomenon in perennial tree crops. This paper first presents a theoretical modeling and simulation study of the mechanism for this dynamics in citrus, and then provides a test of the proposed models using data from a previous 16-year experiment in a citrus orchard. Our previous studies suggest that the mutual effects between vegetative and reproductive growths caused by resource allocation and budgeting in plant body might be considered as a major factor responsible for the yield oscillations in citrus. Based on the resource budget model proposed by Isagi et al. (J Theor Biol. 1997;187:231-9), we first introduce the new leaf growth as a major energy consumption component into the model. Further, we introduce a nonlinear Ricker-type equation to replace the linear relationship between costs for flowering and fruiting used in Isagi's model. Model simulations demonstrate that the proposed new models can successfully simulate the reproductive behaviors of citrus trees with different fruiting dynamics. These results may enrich the mechanical dynamics in tree crop reproductive models and help us to better understand the dynamics of vegetative-reproductive growth interactions in a real environment.
Keywords: Alternate bearing; Nonlinear dynamics; Resource budget model; Vegetative-reproductive growth interactions; Modelling (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916300959
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:87:y:2016:i:c:p:51-60
DOI: 10.1016/j.chaos.2016.03.016
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().