EconPapers    
Economics at your fingertips  
 

Application of the state deterioration evolution based on bi-spectrum entropy and HMM in wind turbine

Xiuli Liu, Xiaoli Xu, Zhanglei Jiang, Guoxin Wu and Yunbo Zuo

Chaos, Solitons & Fractals, 2016, vol. 89, issue C, 160-168

Abstract: Concerning the problem of large rotating machinery with non-stationary state like wind turbine, this research mainly makes an emphasis on the method of state deterioration recognition based on bi-spectrum entropy and HMM (Hidden Markov Model). Firstly, the true signal such as low-speed start vibration signals of rotor test rig in the normal state and a plurality of imbalance deterioration degrees are collected. Bi-spectrum is applied to obtain the fault feature from the vibration signals mixed with a complex background noise. On the basis of bi-spectrum analysis, a bi-spectrum entropy algorithm is derived under the condition of subspace distribution probability, and the HMM for the fault pattern recognition is established by using the bi-spectrum entropy feature as input. This method is verified by successfully recognizing four state deterioration degrees. Finally, the method is applied to recognize the imbalance deterioration degree of wind turbine with the type of SL1500/82 and equipment actual working condition verified the effectiveness of the proposed method.

Keywords: Wind turbine; Bi-spectrum entropy; HMM; State deterioration; Pattern recognition (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915003288
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:89:y:2016:i:c:p:160-168

DOI: 10.1016/j.chaos.2015.10.018

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:160-168